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Abstract The present work continues our series on the
use of MARCH-INSIDE molecular descriptors (parts 1
and II: J Mol Mod 8:237-245, [2002] and 9:395-407,
[2003]). These descriptors encode information pertain-
ing to the distribution of electrons in the molecule
based on a simple stochastic approach to the idea of
electronegativity equalization (Sanderson’s principle).
Here, 3D-MARCH-INSIDE molecular descriptors for
667 organic compounds are used as input for a linear
discriminant analysis. This 2.5D-QSAR model dis-
criminates between antibacterial compounds and non-
antibacterial ones with 92.9% accuracy in training sets.
On the other hand, the model classifies 94.0% of the
compounds in test set correctly. Additionally, the
present QSAR performs similar-to-better than other
methods reported elsewhere. Finally, the discovery of a
novel compound illustrates the use of the method. This
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compound, 2-bromo-3-(furan-2-yl)-3-oxo-propiona-
mide has MICsq of 6.25 and 12.50 pg/mL against
Pseudomonas aeruginosa ATCC 27853 and Escherichia
coli ATCC 27853, respectively while ampicillim, am-
oxicillim, clindamycin, and metronidazole have, for
instance, MICs, values higher than 250 pg/mL against
E. coli. Consequently, the present method may be-
comes a useful tool for the in silico discovery of anti-
bacterials.

Keywords Antibacterials - 2.5D-QSAR -
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Introduction

Quantitative-structure-activity relationships (QSAR)
methods have emerged because of the interest in finding
efficient methods for the discovery of new drug-like
compounds, understanding biological mechanism of
action, and the search for compounds with the required
profile of activity [1]. This method is based on the rep-
resentation of molecular structure by certain numbers,
the so-called molecular descriptors, which are thereafter
connected with biological activity by regression tech-
niques [2, 3].

Quantum chemical calculations can be used to obtain
a priori descriptors for QSAR studies. Given that some
of these quantum properties are not observable, the way
to calculate them is not uniquely defined. Consequently,
it is likely that there are many different schemes for their
calculation, none of which is fundamentally more cor-
rect than another. Unfortunately, the computation is
often also computationally too demanding for large sets
of molecules [4]. In order to tackle this difficulty, Bul-
tinck et al. [5] described an implementation of a com-



putational approach based on the electronegativity
equalization principle (EEP) to allow very fast calcula-
tion of atomic charges and related molecular descrip-
tors. According to the EEP described by Sanderson,
when molecules are formed the electronegativities of the
constituent atoms become equal, coinciding with a fixed
distribution for probabilities of finding the electrons in
the neighborhood of a specific atom in the molecule at
the steady state [6-9]. Simpler and faster methods to
calculate molecular descriptors based on the idea of EEP
are of interest for very large databases of compounds to
find drug-like leads.

Consequently, our research group has introduced a
Markov chain (MC) approach based on the idea of EEP
[10-19]. As a consequence, we were able to derive new
molecular descriptors encoding the distribution of elec-
trons in the molecule. The approach termed as Mar-
kovian-Chemicals-In silico-Design (MARCH-INSIDE)
has been shown to be very useful in drug design, toxi-
cology, proteomics, and Dbioinformatics [10-19].
MARCH-INSIDE also presents the interesting ability to
codify 3D structural features such chirality and Z-E
isomerism [12, 13, 19].

This last feature encourages us to study highly 3D-
structure-dependent pharmacological activities like
antibacterial action [20]. As a result of the widespread
use of antibacterials antibacterials-resistant pathogens
have become more widespread. This, in turn has fuelled
an ever-increasing need for new drugs [21]. 2.5D-
MARCH-INSIDE and linear discriminant analysis
(LDA) have been used to develop a QSAR in order to
classify compounds as anti-bacterial or not, within
structurally heterogeneous series. The results are pre-
sented in this work. The predictability for test set and
comparison with respect to previous models validate this
QSAR. In addition, the selection by virtual screening,
synthesis, characterization, and preliminary assay of a
novel compound illustrates how to use the model in

Fig. 1 Diagrammatic
representation a Markov model
for electrons distribution.

The symbol faiionary represent
the stationary time,
electronegativity equalization
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practice. Finally, back-projection analysis of some
compounds exemplifies the use of the model for struc-
ture-activity-relationship mapping.

Materials and methods
The basis of the 3D-MARCH-INSIDE approach

The basis of the present approach has been explained
in detail elsewhere [11]. Briefly, the model constitutes a
stochastic approach to EEP. Consider a hypothetical
situation in which a series of atoms interact to form a
molecule at an arbitrary initial time (zy5) [10-13, 18,
19]. Assume that after this initial situation, electrons
start to distribute around atom cores in discrete
intervals of time #,. As depicted in Fig. 1, this model
describes the probabilities (kpé,) with which electrons
move from any arbitrary atom a; at time #, (in black)
to other a; atoms (in white) throughout discrete time
periods 1 (kfl 2, 3,...) and throughout the chemical
bonds.

The present procedure considers the external electron
layers of any atom core in the molecule (valence shell) as
states of the MC. The method uses the matrix 'TI, which
has the elements ' p;- This matrix is called the 1-step
electron-transition stochastic matrix. 'II is built as a
square table of order n, where n represents the number
of atoms in the molecule. The elements (lp,;,) of the 1-
step electron-transition stochastic matrix are the transi-
tion probabilities with which electrons move from atom i
to j in the interval ¢; =1 (considering #,=0) [10-13, 18,
19]:

.
'pij = oflji (1)
> Ape
k=1

G
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Where, y; is Pauling’s electronegativity [22] for the atom
a;, which is bound to the atom a;. In this equation, ¢ is
the number of atoms that compete with a; by its own
electrons (atoms bound to a;) the number 1 accounts for
the atom a; per se. We will only use 'IT in the following.
The spatial configuration of every atom has been codi-
fied through the dummy variable w;. This variable (w))
takes the value w;=1 if the atom a; is R, E or axial and
the values w;=0, —1 if the atom a; does not have a
specific spatial configuration or is present in the S, Z or
equatorial configuration. The symbols R, S refer to the
chirality of the atom. Alternatively, Z-E refers to the 3D
characteristic for atoms involved in double bonds [12,
13, 19, 20]. The first step on calculating ' ™ is to derive an
electronegativity matrix y, whose elements are isomer-
indicator exponential functions coinciding with the
numerators of expressions like Eq. 1 [12, 13, 19]. In the
short-term scale of time (z;=1) the movement of elec-
trons is described here by 'TI, whilst the probabilities of
long-term movements are the elements of “TI, (7, = k >
0) described herein by the Chapman-Kolgomorov
equations [10-23]:
1 = ('1)* 2)
The method uses the sum of the self-return proba-
bilities of the natural power of this matrix (SRzy) as
molecular descriptors. In classical Markov theory, these
numbers are the probabilities with which the system
returns to the initial state. In the present context, they
are the probabilities with which electrons return to the
original atoms at different times. That is to say, these
numbers encode the distribution of electrons after the
formation of the molecule as governed by EEP [10-13].
The calculation of S®m, for any organic or inorganic
molecule was carried out using the MARCH-INSIDE
software, Tr being the trace operator [24]:

9
SRTEk(U)) — kaii _ Tr(ll—[k)
i=1

3)

Statistical analysis

In order to discriminate the antibacterial activity of
drugs we will use a simple linear QSAR using 3D-
MARCH-INSIDE with the general form:

A=b+ boxSRno(w) + by xSRm(w) + bszan(w) +...
+ brx SRy (w)

(4)

Here, b, are the discriminant function coefficients fitted
by linear discriminant analysis. The model deals with the
discrimination of antibacterial chemicals from non-ac-
tive ones.

Examination of the Fisher ratio (F) and the p-level (p)
determines the quality of the model. We also inspect the

percentage of good classification and the proportion
between the cases and variables in the equation or
variables to be explored in order to avoid over-fitting or
chance correlation. Finally, predictability in an external
prediction set validates the model. These compounds
were never used to develop the classification function
[25-27]. The ROC curves, and the area under these
curves, were used additionally to validate the model [28].

Each compound was scored in terms of posterior
probability by means of the posteriror probability with
which the compounds is classified as antibacterial (P).
This value constitutes a direct output of the model. This
is a rigorous statistical index, which permits us to quote
for the error. It possible to classify as antibacterial those
compounds with P% > 5, as a consequence that the
model p-level threshold limit is 0.05. Conversely, those
chemicals with P% < —5 must be classified as inactive
ones. Whereas, chemicals in the range 5 > P% > 0
must be considered as unclassified by the model at this
p-level [10, 11].

Biological activity data used to seek the QSAR

Here we considered a general data set composed by
structurally diverse organic chemicals. This original set
was split at random in order to design two different sets
of antibacterial chemicals and two additional sets of
non-antibacterial ones. Both the antibacterial activity
and the chemical structure of each compound were
verified in different references [29, 30]. For training and
predicting sets, those compounds recognized as anti-
bacterials in the referred databases were considered as
active without taking into consideration the strain or the
concentration of drug required. Conversely, compounds
with no effect against any strain were considered as non-
active, as is usual practice in the QSARSs reviewed below
in Table 1.

Synthesis and characterization

Reagents were used as purchased without further purifi-
cation. Solvents (CHCl3) were dried and freshly distilled
before use according to literature procedures. Chro-
matographic TLC was performed on pre-coated silica gel
polyester plates (0.25 mm thickness) with fluorescent
indicator UV 254 (Polychrom SI F254). Melting points
were determined on a Buchi 510 apparatus and are
uncorrected. The IR spectrum was recorded on a Perkin-
Elmer 1640FT spectrometer (KBr disk, v in cm™'). The
"H-NMR and "C-NMR spectra were recorded on a
Bruker WP 200-SY spectrometer at 200 MHz or on a
Bruker SY spectrometer (400 MHz), the chemical shifts
(o) are given in ppm downfield from tetramethylsilane.
For EIMS analysis, a VG-TS250 apparatus (70 eV) was
used. Elemental analysis was performed on a Perkin-El-
mer 240B microanalyzer and the values were within +
0.4% of calculated ones in all cases.



Table 1 Comparison with other approaches
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Models’ features to be compared®

Antibacterial activity classification models

1 2 3 4 5 6 7 8 9 10 11
N total 667 661 661 661 352 111 111 - 972 458 433
N antibacterials 363 249 249 249 174 60 60 - 241 229 217
Technique® LDA LDA BLR ANN LDA LDA ANN LDA LDA LDA LDA
U-statistics (Wilk’s A) 0.38 - - - 0.45 0.28 - 0.57 0.58 0.56 -
F 139.3 - - - 48.2 20.9 - 116.6 98 98 -
D’ 533 - - - 4.9 - - - - - -
p-level 0.00 - - - 0.00 0.00 - 0.00 0.00 0.00 0.00
3D-topologic indices® yes no no no no no no no no no no
Explored variables 10 167 167 62 10 16 16 - - - 62
Vars. in model 7 6 6 62 7 7 7 8 8 2 6
Back-projection? yes no no no yes no no no no no no
Training series
N total 492 661 661 661 289 64 64 294 698 355 433
N antibacterials 274 249 249 249 174 34 34 - 169 161 217
Accuracy (%) 92.85 926 94.7 - 91 94.0 89.0 > 90 86.8 ~ 85 ~ 85
Families of drugs® 11 8 8 8 9 3 3 - > 5 - > 8
Validation )
Validation method' i il il iii i i i i i i i
N total 175 - - 63 63 47 47 70 274 103 128
N antibacterials 89 - - 45 45 26 26 - 72 68 64
Predictability (%) 94 93.6 94.3 ~ 94 89 92 97.9 > 90 869 ~ 85 ~ 85
Families of drugs® 11 - - 8 9 3 3 - >5 - > 8

“Model 1 is reported in this work, models 2 and 3 were reported by
Cronin et al. in reference [35], model 4 appears in reference [36]
after Tomas-Vert et al., model 5 was very recently reported by
Molina et al. [37] models 6 and 7 were published in 1998 (reference
[38]), model 8 was developed by Mut-Ronda et al., [39] two LDA
models were recently introduced by Murcia-Soler et al.; model 9 in
[39] and 10 in reference [41]. The last model here depicted was
Eublished by Gregorio-Alapont et al. [42]

LDA refers to Linear discriminant analysis, ANN to artificial
neural network, and BLR to binary logistic regression.
¢ Considers the capability of the method to encode together chi-
rality, Z-E, and axial-equatorial isomerism.

2-Bromo-3-(furan-2-yl)-3-oxo-propionamide

To a solution of 2-furoylacetonitrile (2.7 g, 0.02 mol) in
chloroform (20 mL), was added under strong stirring
anhydrous benzoyl peroxide (4.84 g, 0.02 mol). There-
after, bromine (3.2 g, 0.02 mol) was added and the
mixture was stirred for 2 h at r. t. The solution was
washed with water and NaHCO; 5%, dried over
Na,SO,4 and the solvent was evaporated under vacuum.
The solid residue was recrystallized from ethanol to give
the desired compound (3.6 g, 77% yield).

— Mp (dec.) = 155.8-156.7 °C.

— "H-NMR (acetone- dg), : furanic protons [7.94 (m,
IH, H-5), 7.55 (m, 1H, H-3), 6.75 (m, 1H, H-4)], 7.0-
7.75 (m, 2H exch., NH,), 5.73 (s, IH, CH).

— 3C-NMR (acetone- dg), d: furanic carbons [150.82 (C-
2), 149.25 (C-5), 120.92 (C-3), 113.7 (C-4)], 178.83
(C=0), 184.5 (C=0), 47.51 (CH).

— EIMS (70 eV) m/z (%): 231 (M ), 233 (M +2] "), 152
(41), 95 (98), 31 (100).

— IR v : 3,423, 3,301, 1,666, 1,656.

— Anal. C;HgBrNOs: C, H, N.

dConsiders the possibility of deriving a map with the calculated
contribution of any atom in the molecule to the biological activity.
°Only largely represented families were considered, e. g, methods 1
and 2 used 3 in training quinolones, sulphonamides, and cephalo-
sporins but add only diaminopyridine (1 compound), cephamicins
(2), oxacephems (1) and sulfones (1) to predicting series.
'Validation methods are: (i) external predicting series, (ii) leave-
30%-out crossvalidation, and (iii) 100-times-averaged re-substitu-
tion technique. Furthermore, note that methods ii and iii are cross-
validation methods

Biological assay of a new compound

This study was carried out with a new compound not
contained in the training or predicting series but pre-
dicted afterwards. In vitro minimal inhibitory concen-
tration (MICsg) assays were carrying out throughout
the Mueller-Hinton serial dilution method according to
the recommendations of the National Committee for
Clinical Laboratory Standards [31, 32]. The MICs,
value was determined for two ATCC reference bacterial
strains: Ps. aeruginosa ATCC 27853 and E. coli ATCC
27853.

Results and discussion
QSAR modeling

Once we split at random the original data in represen-
tative training and test set, the training set may be used
to seek the discriminant function using LDA. The model
selection was subjected to the principle of parsimony or
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Occam’s Razor [27]. As a result; we chose a function
with higher statistical significance but with few param-
eters (by) as possible:

Astana = 0.025R g () + 1.57R 1y (w) — 3.56%R 73(w)
+ 4.33%R 4 () — 19.55R 14 (w) 4 24.85R 717 (w)
— 7.8%R79(w) + 4.221

F =139.27 p<0.001

(5)

Where, Agang 18 @ dummy variable (1 for antibacterial
compounds and —1 for non-active ones). Prior to fitting,
all molecular descriptors were mean-centered and nor-
malized to avoid certain descriptors dominating the
model. The Fisher test allows us to test the hypothesis of
separation of groups with a probability of error (p-level)
p < 0.05. All the parameters have the same values for
Eq. 5[10, 11, 27, 33]

The model correctly classifies 92.9% of the com-
pounds in the training set. Specifically, the model
correctly classifies 252 out of 274 (91.9%) antibacterial
compounds and 205 out of 218 (93.9%) inactive
compounds in the training set. Although the model is
not strictly 3D, the use of w allowed us to take
compounds with specific 3D structure into consider-
ation. The names of all compounds used to derive the
QSAR as well as their predicted activity appear in
Table S1 (see supplementary material). Compounds
were ordered according to different intervals of pre-
dicted activity.

On the other hand, the prediction series shows a
94.0% global predictability. In this study the discrimi-
nant function gave rise for a good classification of 85 out
0f 92 (95.9%) and 79 out of 83 (92.2%) non-active drugs
respectively. The names of all compounds used to vali-
date the QSAR as well as their predicted activities ap-
pear in Table S2, see supplementary information. Both,
training and predicting sets percentages of good classi-
fication validates the model for the use in virtual
screening taking into consideration that 85.0% is con-
sidered as an acceptance threshold limit for this kind of
analysis [34].

A more serious validation was carried out by calcu-
lating the areas under the receiver operating character-
istic (ROC) curve to show how well the model classifies.
Figure 2 depicts the ROC curves obtained for com-
pounds on training and predicting sets with areas under
the curves of 0.98 and 0.97, respectively. A ROC area of
1.0 indicates perfect classification. A clear difference
between the two ROC curves and the line in the main
diagonal that represents a random classifier area under
curve equal to 0.5 can be seen [28].

Comparison with other models

The present QSAR performs better-to-similar with
respect to the other 11 models based on large heter-

a4

0 0.2 0,4 0,6 0,8 1

—a— Training ---o---Predicting |

Fig. 2 Operating receive characteristic curve (ROC-curve) for
training and predicting series of antibacterial and non-active
compounds

ogeneous series of antibacterial/non-antibacterial
compounds, see Table 1 of the supplementary material
[35-41]. In addition to the ten models shown in the
Table 1, another interesting study of antibacterial
activity was reported by Mishra et al. [42] However,
the largest data set studied by Mishra et al. [42]
incorporated only 463 compounds (242 antibacterials)
with about 84% overall predictability and without 3D
or 2.5D indices. Briefly, the present model has some
interesting characteristics (see Table 1, salient points in
boldface):

1. It uses the largest up-to-date reported data set of
experimentally corroborated antibacterial com-
pounds (363) for a QSAR study.

2. A broad range of applicability for this model can be
stressed considering the larger number of families of
different organic compounds used.

3. It must also be noted that on seeking the present
model we explored only ten molecular descriptors.

4. This model makes use of chiral topologic indices [43]
for the search of antibacterial compounds for the first
time.

5. The quality of the predictions of this model have been
assessed using a more rigorous test set method, re-
substitution. Some of the other models assessed pre-
dictability using cross-validation methods (e.g. leave-
one-out or jacknife).

The previous topological models do not consider the
3D structure. Although the present model does not
consider geometric 3D information, it may discriminate
drugs with different 3D structure due to the use of w,
including optical and Z-E isomers. Consequently, pre-
dictions using the earlier models are expected to fail in
such very commonly occurring cases in which stereo-
chemistry determines the biological activity. [12, 18-20,
44] The discrimination of different kinds of sterecoisom-
ers has been fully exemplified before for 3D-MARCH-
INSIDE [12, 13, 19]. Figure 3 illustrates this aspect for a
simple example. It is straightforward to realize that, the
more different the matrices are for a pair of isomers the
larger the differences for their calculated molecular de-
scriptors. We would like to highlight that the present



Fig. 3 Depicts the different
electronegativity matrix y

(which elements are equal to y; - )Ic_i 21'{]
exp(w;)) if atom a; bounds to F 0
atom a; or equal to 0 otherwise, C 21
the normalized stochastic or Br 0
Markov matrix 'TT derived from al 0
¥ and its first power 2T for a
pair of mirror isomers H
H 0.24
F 0
C 0.11
Br 0
Cl 0
H
H 0.14
F 0.09
C 0.1
Br 0.1
Cl 0.1

comparison does not involve the abilities of different
indices as molecular descriptors. In fact, recent results
report the generalization of classic connectivity indices
for chirality codification [43—46]. The present compari-
son refers only to the range of applicability of the re-
ported QSARs with respect to the present one.

Virtual screening

Finally, the discovery of 2-bromo-3-(furan-2-yl)-3-oxo-
propionamide as a novel antibacterial compound illus-
trates the use of the model in practice. First, the SR (w)
values were calculated for a large dataset of organic
compounds. Unfortunately, the data it is not available at
the moment due to ongoing patenting process. However,
this data it is not necessary to reproduce the present work,
taking into consideration that only training and valida-
tion sets must be used in doing so. Secondly, the posterior
probabilities of antibacterial activity were predicted with
the 2.5D-QSAR. Lastly, the compound with the highest
probabilities was synthesized starting from 2-furoyl-
acetonitrile, with a yield of 77.0% (Fig. 4).

After biological assay this amide showed MICs,
values of 6.25 and 12.50 pg/mL against Ps. aeruginosa
ATCC 27853 and E. coli ATCC 27853, respectively.
These are strains of bacterial species with high clinical
incidence. With these MICsy, the compound may be
considered useful as a lead compared for instance with
the MICsq for ceftriaxone, a comercial drug, which has
an MICsgof 0.06 against pg/mL E. coli but 64.0 pg/mL
against Ps. aeruginosa [47]. However, E. coli has devel-

Fig. 4 Synthesis of 2-bromo-3-
(fur-2-yl)-3-oxo-propionamide

]

CN
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[R]-CHCIBrF [S]-CHCIBrF

F C Br Cl X H F C Br Cl

0 6.8 0 0 H 2.1 0 0.92 0 0

4 6.8 0 0 F 0 4 0.92 0 0

4 6.8 2.8 3 C 2.1 4 0.92 2.8 3

0 6.8 2.8 0 Br 0 0 0.92 2.8 0

0 6.8 0 3 Cl 0 0 0.92 0 3

MR] MR}

F C Br Cl H F C Br Cl

0 0.76 0 0 H 0.7 0 0.3 0 0
0.4 0.63 0 0 F 0.8 0.19 0 0
0.2 036 0.15 0.16 C 0.16 0.3 007 022 023

0 0.71 0.29 0 Br 0 0 025 0.75 0

0 0.69 0 0.31 Cl 0 0 0.23 0 0.77

T[R] ’[[R]

F C Br Cl H F C Br Cl
0.2 046 0.11 0.12 H 0.53 0.1 023 0.07 0.07
0.4 025 0.12 0.13 F 0.03 0.6 035 0.04 0.04
0.2 035 0.15 0.16 C 0.09 0.2 043 0.13 0.14
0.2 026 029 0.15 Br 0.04 0.1 0.4 045 0.05
0.2 026 0.13 0.31 Cl 0.03 0.1 039 0.05 047

oped resistance against several broad-spectrum anti-
bacterial drugs such as ampicillim, amoxicillim,
clindamycin, and metronidazole with MICs, values
higher than 250.0 pg/mL in all cases [48]. In the present
case, both enantiomers were predicted with similarly
high probabilities, so we decided not to separate them in
this preliminary study. More rigorous studies aimed at
the synthesis, characterization, stability, biological test-
ing, and the mechanism of action (now unknown) of
both enantiomers and their derivatives are beyond of the
scope of the present paper.

Back-projection analysis

Finally, to gain further insight into the role played by
the different molecular features a back-projection ap-
proach was used. Specifically, the use of back-project-
able approaches enables the variables in the QSAR to be
projected back into the molecular space, providing bio-
logically and chemically significant conclusions. The
MARCH-INSIDE descriptors introduced by our re-
search group constitute another example of novel back-
projectable molecular descriptors. Specifically, the
model introduced in the present work may be used to
draw visual structure-activity maps for drugs in the
training and test sets, as well as for the novel compound
reported here by the first time. This analysis makes it
possible to calculate the contribution of the different
groups of atoms in the molecule to the pharmacological
activity. First, the SR™ ; values for each atom in the

b) Br, Br

g

0]

f
Y o
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Fig. 5 Colour scaled
backprojection analysis of some
compounds in training and
predicting sets: nitrofurantoin
(left top), cefuroxime (right top),
nifuroxime (left bottom) and 2-
bromo-3-(fur-2-yl)-3-oxo-
propionamide (right bottom).
Colour code is as follows: blue
structural framework with high
(more than 50%) contribution
to the property, light blue group
with significant contribution
(20-50%), grey group with low
(< 10%) or not contribution to
the property

Nitrofurantoin

Nifuroxime

molecule are calculated and afterwards they are evalu-
ated in the QSAR equation. All values are normalized
within 0—100 scales [49].

Figure 5 depicts these maps for nitrofurantoin, ce-
furoxime, nifuroxime, and 2-bromo-3-(fur-2-yl)-3-oxo-
propionamide. Interestingly, one can note that the
furan ring shows high positive contributions to the
activity in nitrofurantoin, and nifuroxime, which are
S-nitro-furans with a double bond (C=N) attached to
position 2 of the furan ring. These classes of com-
pounds are expected to bind the target by nucleophilic
substitution at the double bond activated by the
electron-withdrawing nitro group. In this sense, our
maps coincide with previous knowledge. Conversely,
in cefuroxime the highest contribution was calculated
for the p-lactamic framework with no significant
contribution of the furan ring. This coincides with the
structure-activity relationships for cephalosporin. In
the case of 2-bromo-3-(fur-2-yl)-3-oxo-propionamide, a
high contribution for the furan ring is also predicted.
This indicates that this compound is more like the
nitro-furans [21].

The explosion in the use of novel topologic molecular
descriptors will continue in the future. The fusion of
high throughput screening with QSAR techniques is a
promising new field [50]. In conclusion, the above
modeling results introduce a timely way for the discov-
ery of antibacterial lead-like compounds taking into
consideration 3D structural features.
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